4 A	Water Treatment I	
10:30 AM	Multifunctional magnetic nanocomposites (Overview talk)	Dino Villagran
11:00 AM	Arsenic Removal by Graphene Oxide-Nanoscale Zero-valent Iron Hybrid	Tonoy K. Das
11:20 AM	Development of multifunctional nanocomposite coating for indirect potable reuse water treatment	Pasan Chinthana Bandara
11:40 AM	Producing Clean Water and Salinity Gradient Energy by Using a Graphene Oxide Laminate	Xin Tong
12:00 PM	Iron Nanoparticle Impregnated 1-D and 2-D Carbon Nanohybrids Prepared with Ultrasonic Spray Pyrolysis for Cr (VI) Removal	Nirupam Aich
12:20 PM	Investigating the effect of graphene oxide on scaling in thin-film composite polyamide reverse osmosis membranes	Ali Ansari
12:40 PM	Lunch	

4B	Water Treatment II	
2:00 PM	Preferential interaction between functionalized multiwalled carbon nanotubes and bacteriophage MS2 in water	Navid B. Saleh
2:30 PM	Integration of graphene oxide in mixed-matrix membranes: balancing membrane performance with fouling resistance	Francois Perreault
2:50 PM	Application of External Voltage for the Release of Deposited Organic Foulants from PPy- Graphene Oxide and PPy- Molybdenum Disulfide Surfaces by NaCl Electrolysis	lftaykhairul Alam
3:10 PM	Water Clusters with Superatom Electronic States	Juan C. Noveron
3:40 PM	Break	
4:00 PM	Role of Particle Chemistry on Filtration Mechanisms of Water Treatment- Food Grade and Industrial Grade TiO2	Chen Chen
4:20 PM	Antimicrobial Property of MoS2 Nanosheets and Potential Application in Controlling Membrane Biofouling	Yingcan Zhao
4:40 PM	Characterizing Wastewater Behavior of Titanium Dioxide Nanoparticles	Travis Waller
5:10 PM	Facile Modification of Bi2WO6 with Base for Improved Photocatalytic Activity under Visible Light	Bangxing Ren
5:30 PM	Quantitative Understanding of Nanoparticle Flocculation in Water Treatment	Sungmin Youn

Water Treatment, Overview

- Clean water, one of the most basic needs
- Each year, the world generates 400 billion tons of industrial waste.
- 1.1 billion people do not have access to clean water.
- Social, Agricultural and Environmental issues.

The Global Challenge: Access to Clean, Fresh Water - Institute for Molecular Engineering http://ime.uchicago.edu/features/the_global_challenge_access_to_clean_fresh_water/ (accessed Dec 13, 2016). 2013 - United Nations International Year of Water Cooperation: Facts and Figures http://www.unwater.org/water-cooperation-2013/water-cooperation/facts-and-figures/en/ (accessed Dec 13, 2016).

Global... and local

Nanotechnology can enhance existing treatment processes

- Turbidity, Taste/odor
- Water hardness
 Electrosorption
- Heavy metal contaminants Selective adsorbents Catalysis Membranes

Selective adsorbents

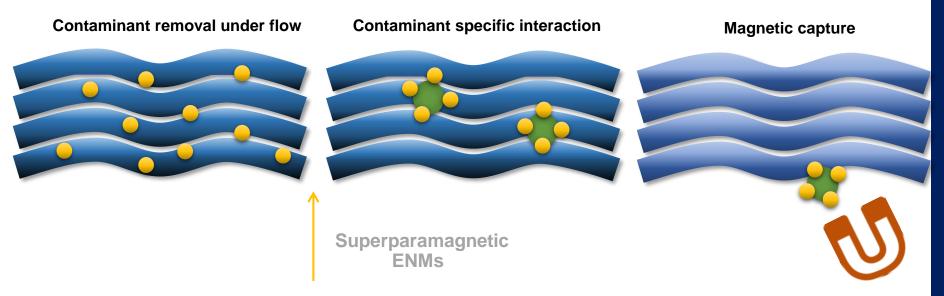
• Oxoanions

Selective adsorbents Catalysis

- Organic pollutants (pesticides, endocrine disruptors, pharmaceuticals)
 Selective adsorbents Catalysis Photocatalysis
- Salts Electrosorption Membranes Distillation
- Pathogens
 Catalysis Photocatalysis

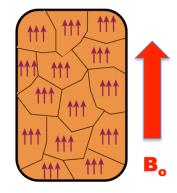
Multifunctional Magnetic Porous Nanocomposites For Water Treatment

Dino Villagran


Students: Karen Ventura, Roy Arrieta, Vahid Jabbari, Mariana Marcos

The University of Texas at El Paso Chemistry Department

November 6th, 2017

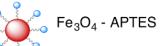

Magnetic nanomaterials

Contaminant binds to Fe₃O₄ nanoparticles

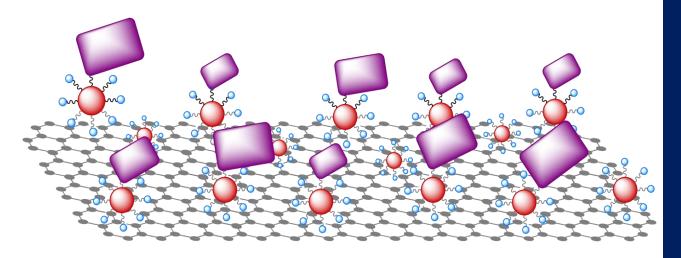
Low-field magnet traps nanoparticles

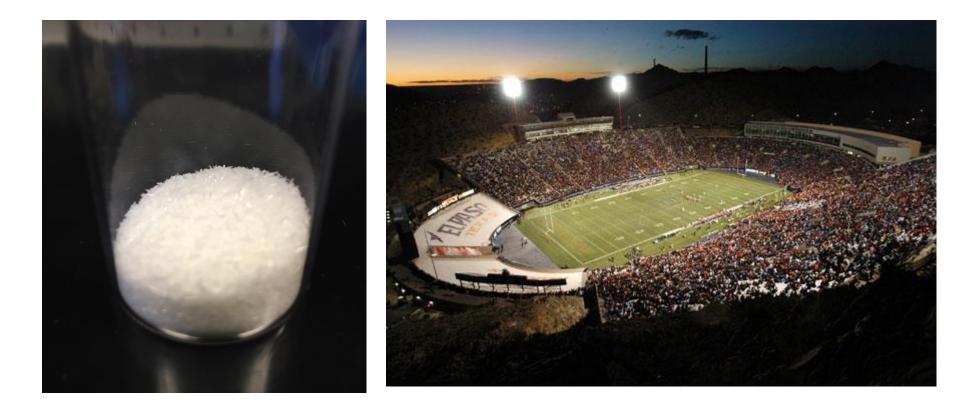
Domains randomly aligned Domains aligned with external field

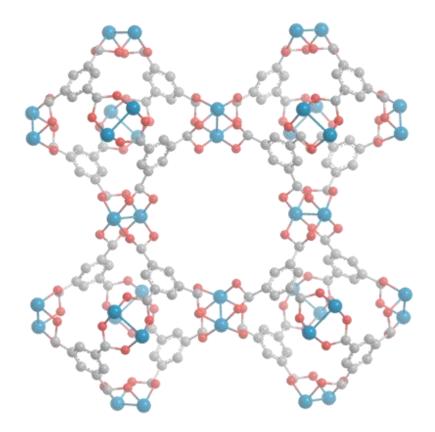
Objective

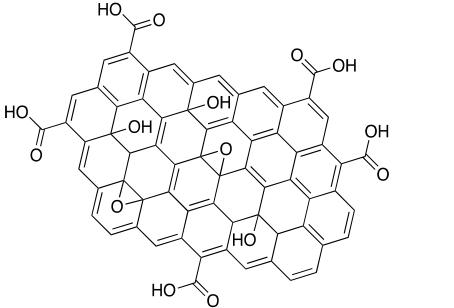

Synthesize engineered nanomaterials with enhanced absorptive properties

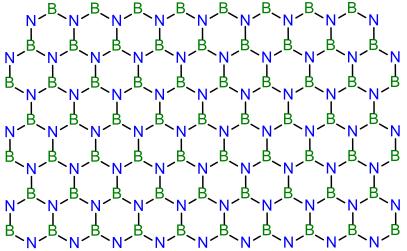
Build a composite system that has these properties


- High Stability
- High Absorptivity towards water pollutants
- Magnetic

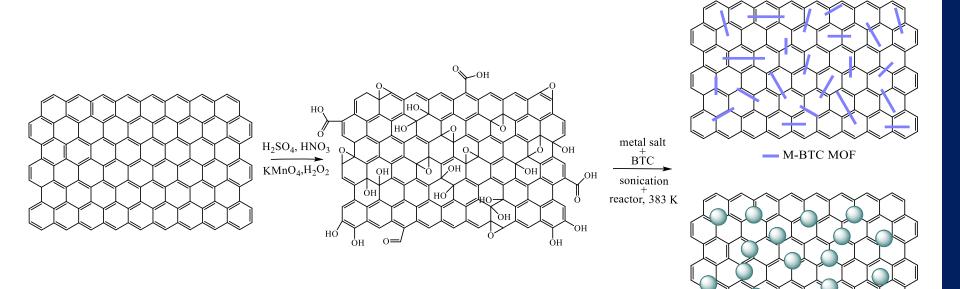

Absorptive material (MOF)

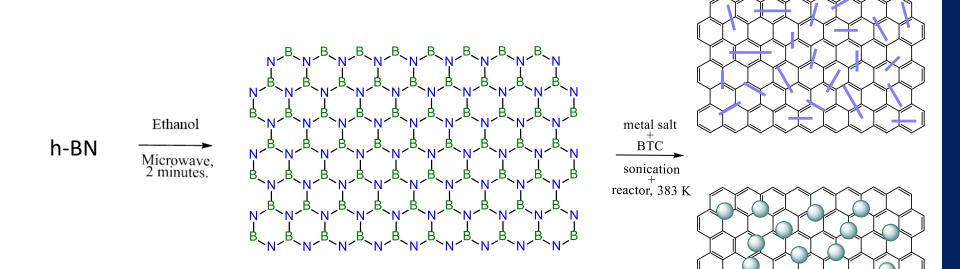

Metal Organic Frameworks (or ZIFs)


2 gram MOF-5 2,900 m²/g Surface Area

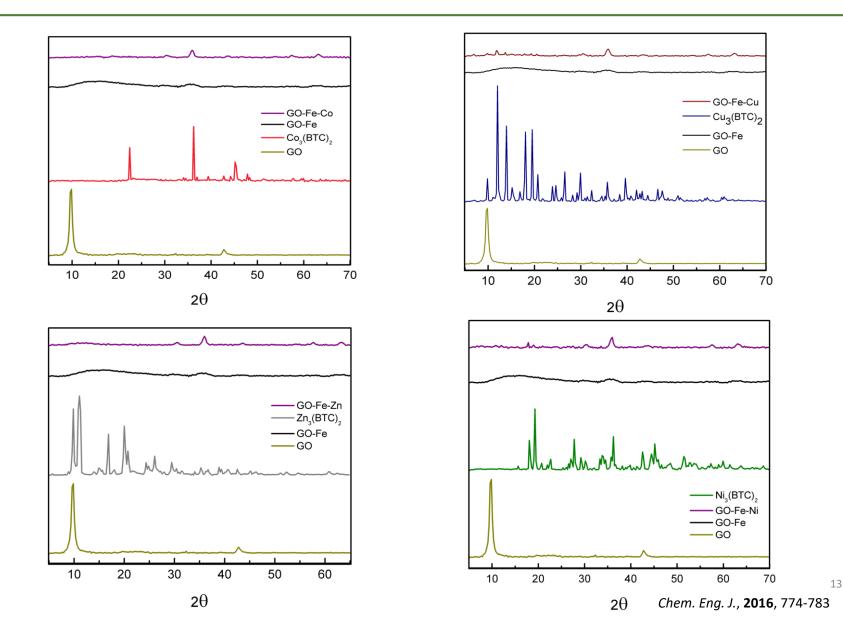

Metal-Organic Frameworks and Zeolitic-Imidizolate Frameworks

- High porosity
- Thermal stability
- Chemical Stability
- Small molecule absorption
- M = Ni, Cu, Co, Zn, Zr
- HKUST; UiO66;

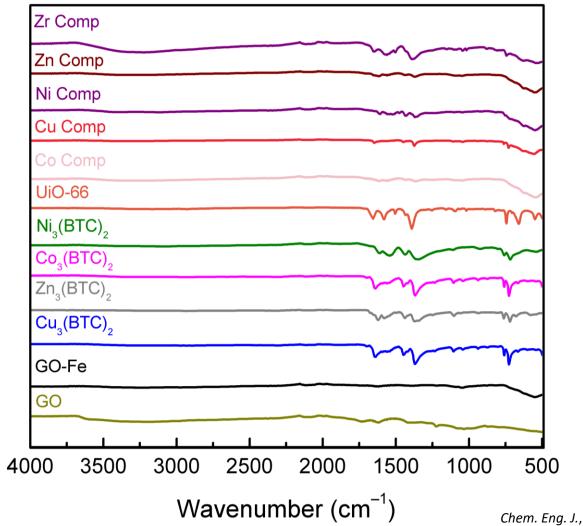

Supporting Platforms


Graphene oxide (GO) Boron Nitride Nanosheets (BNNs)

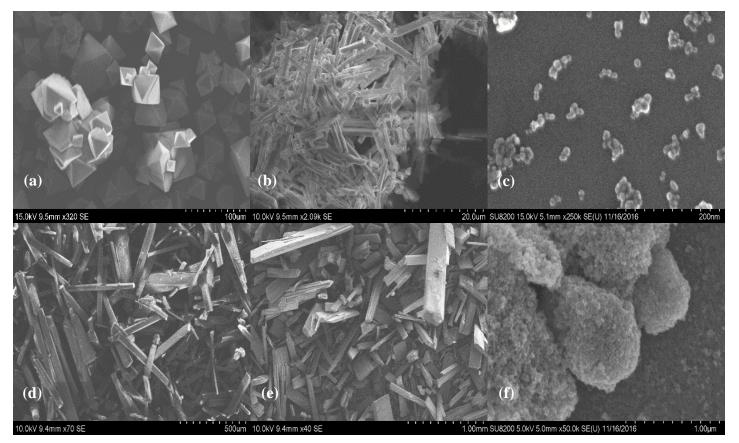
in-situ Formation and Decoration of the MOFs over Graphene Layer



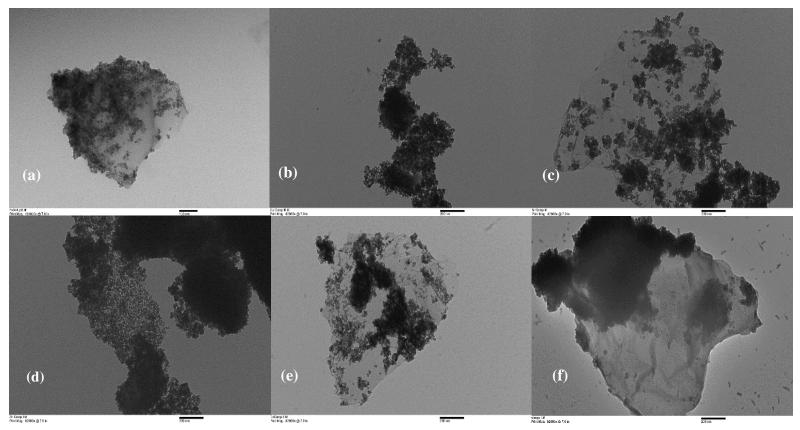
Chem. Eng. J., 2016, 774-783


M-BTC MOF

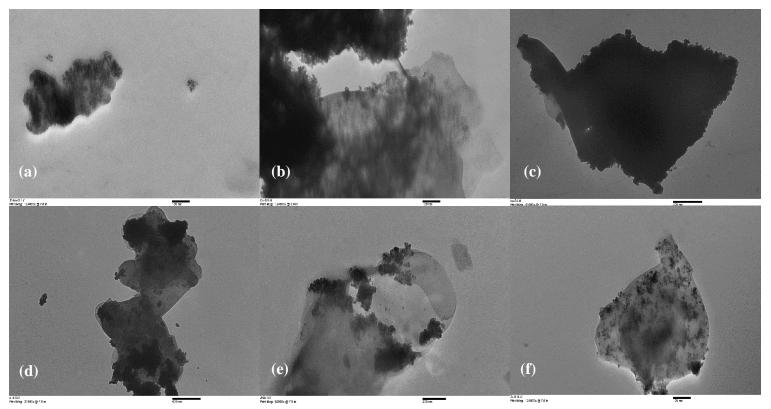
Powder X-Ray Diffraction



Infra-Red Spectra


Chem. Eng. J., 2016, 774-783

Scanning Electron Microscope


SEM images for parent materials. (a) $Cu_3(BTC)_2$. (b) $Ni_3(BTC)_2$. (c) Fe_3O_4 Nanoparticles. (d) $Zn_3(BTC)_2$. (e) $Co_3(BTC)_2$. (f) Fe_3O_4 nanoparticles functionalized with APTES.

Transmission Electron Microscopy

TEM images for GO-nanocomposites. (a) GO coated with Fe_3O_4 nanoparticles. (b) $GO-Co_3(BTC)_2$ magnetic nanocomposite. (c) $GO-Cu_3(BTC)_2$ magnetic nanocomposite. (d) $GO-Ni_3(BTC)_2$ magnetic nanocomposite. (e) $GO-Zn_3(BTC)_2$ magnetic nanocomposite. (f) GO-UiO-66 magnetic nanocomposite.

Transmission Electron Microscope

TEM images for BNNs nanocomposites. (a)BNNs coated with Fe_3O_4 nanoparticles. (b)BN-Co₃(BTC)₂ magnetic nanocomposite. (c)BN-Cu₃(BTC)₂ magnetic nanocomposite. (d) BN-Ni₃(BTC)₂ magnetic nanocomposite. (e) BN-Zn₃(BTC)₂ magnetic nanocomposite. (f) BN-UiO-66 magnetic nanocomposite.

Scanning Electron Microscope

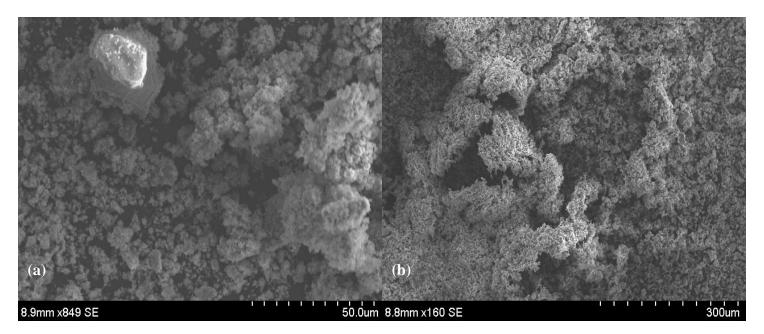
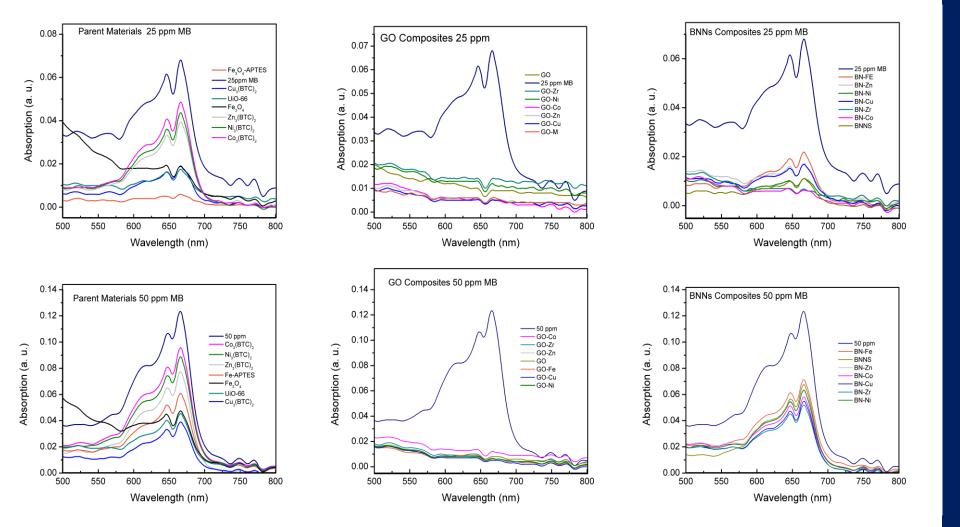
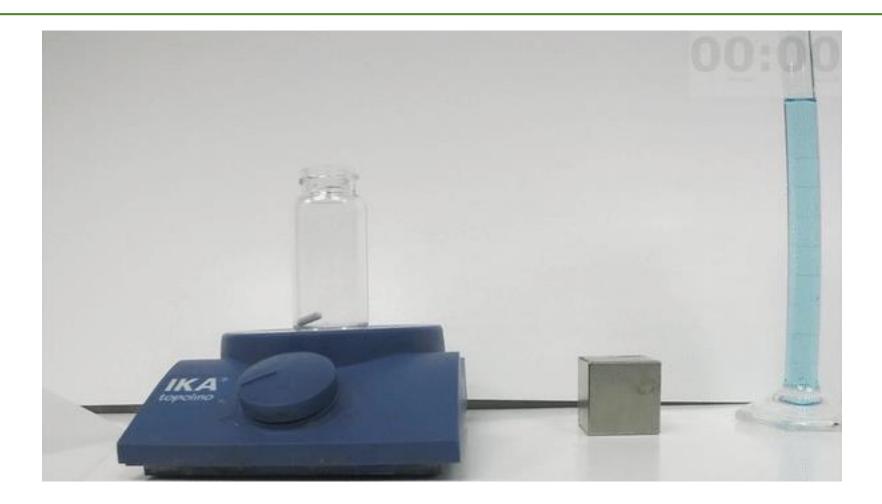
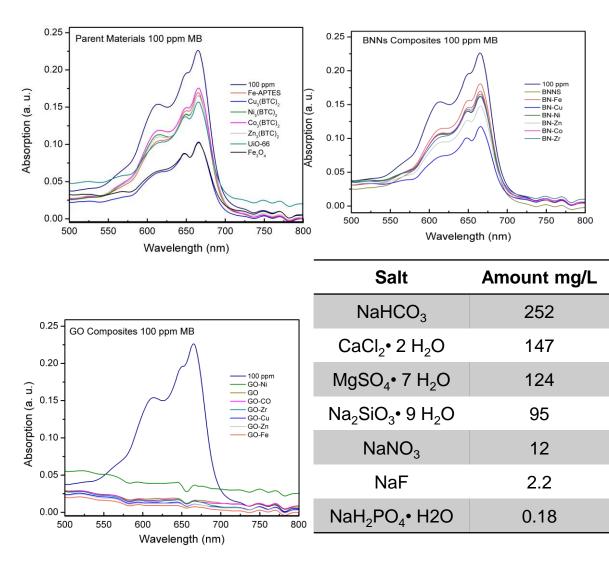


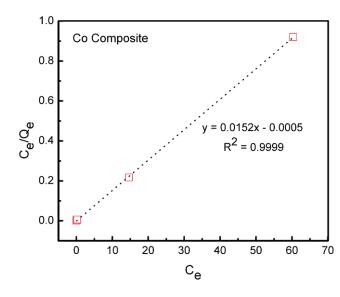
Figure 15. SEM of nanocomposites. (a)GO-Co₃(BTC)₂ magnetic nanocomposites. (b) BN-Co₃(BTC)₂ magnetic nanocomposite.

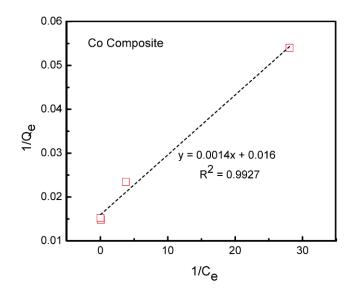

Methylene Blue (MB)

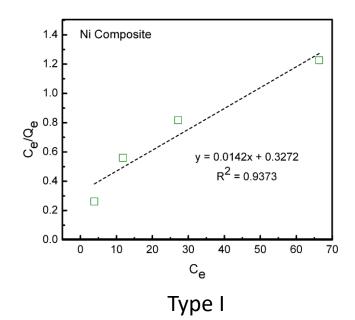

- One of the most common dying materials for textile, MB, has severe health issues such as:
- Neurotoxicity
- Dizziness
- Mental confusion
- Abdominal pain
- Anemia
- Bladder irritation
- Precordial pain

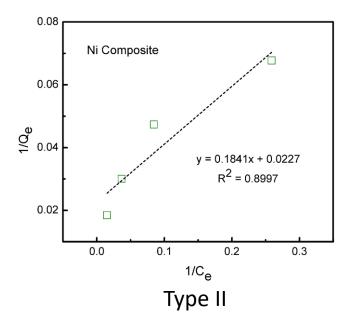

Chemical structure of MB

UV-vis

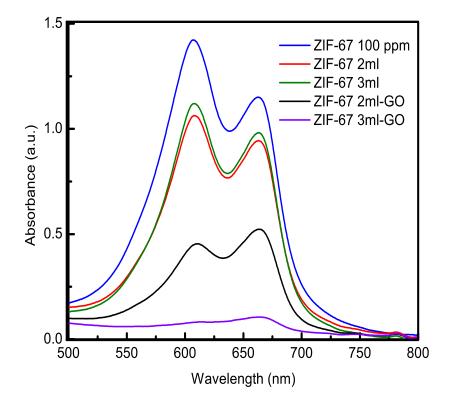





UV-vis



Sample		Qe (mg/g)	
	25 ppm	50 ppm	100 ppm
Fe3O4	33.74	70.55	82.17
Fe-APTES	39.13	51.99	52.01
GO	44.25	92.31	178.34
BNNs	43.39	38.44	55.37
GO-Fe	48.71	89.69	153.13
BN-Fe	35.24	40.41	50.63
Cu(BTC)	37.18	67.69	108.19
Ni(BTC)	12.25	24.58	51.41
Co(BTC)	9.05	23.75	36.17
Zn(BTC)	15.36	34.62	63.71
UiO-66	36.57	51.47	59.32
GO-Cu	48.61	85.01	146.51
GO-Ni	32.71	105.29	189.76
GO-Zn	46.80	103.98	172.67
GO-Co	54.01	92.52	146.09
GO-Zr	37.08	84.21	157.54
BN-Cu	38.95	54.05	89.60
BN-Ni	33.90	53.53	57.49
BN-Zn	30.79	51.42	77.36
BN-Co	46.87	61.07	63.71
BN-Zr	41.85	58.92	58.86
BN-Zr	41.85	58.92	58.86



Zeolitic Imidazolate Frameworks

	12.5 ppm MB	25 ppm MB	50 ppm MB	100 ppm MB
Composite	Avg. Qe.	Avg. Qe.	Avg. Qe.	Avg. Qe
ZIF-67 2mL TEA	15.01	18.48	30.40	28.92
ZIF-67 3mL TEA	15.91	16.48	35.80	21.89
ZIF-67 2mL TEA/GO	22.04	43.31	79.03	99.07
ZIF-67 3mL TEA/GO	22.67	37.53	78.36	120.15

Brackish Water

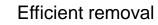
Before Water Treatment

After Water Treatment

Brackish Water Treatment

		Initial			_		Initial	average	loading (mg/g)			Initial	averag	e loading (mg/g)
			average	loading (mg/g)			Conc.					Conc.		01 0.07
_	Ca	158.6	58.1	94.9		Ca	158.6	36.0	113.0		Ca	158.6	40.2	179.7
0	Ca radial	158.6				Ca radial	158.6	_		9	Ca radial	158.6		
	Mg	52.6			i MOF	Mg	52.6			Comp	Mg	52.6		
09 09	Mg radial	52.6	15.7		2	Mg radial	52.6	9.8		CLC		52.6	13.4	
	S	69.4	17.8		2	S	69.4	59.9		0	5	69.4	112.2	
	Si	9.3	3.3			Si	9.3	7.3		_	Si	9.3	13.9	
	Ca	158.6	53.8	124.0		Ca	158.6	42.9	143.9		Ca	158.6	64.1	223.7
	Ca radial	158.6			<u> </u>	Ca radial	158.6			12	Ca radial	158.6		
Fe304	Mg	52.6			MOF	Mg	52.6			NiComp	Mg	52.6		
e3	Mg radial	52.6	10.5			Mg radial	52.6	10.6			Mg radial	52.6	14.4	
1	S	69.4	43.2		10	S	69.4	79.4		12	5	69.4	129.6	
	Si	9.3	16.5			Si	9.3	11.0			Si	9.3	15.7	
_	Ca	158.6	59.8	141.7		Ca	158.6	35.0	149.2		Ca	158.6	57.5	193.3
	Ca radial	158.6			щ	Ca radial	158.6			amo	Ca radial	158.6		
GO-Fe	Mg	52.6			n MOF	Mg	52.6			- Lo		52.6		
ß	Mg radial	52.6	15.6		_ _	Mg radial	52.6	11.4		00	Mg radial	52.6	12.7	
-	S	69.4	57.7			S	69.4	93.7		0	5	69.4	109.9	
	Si	9.3	8.7		_	Si	9.3	9.1		_	Si	9.3	13.2	
	Ca	158.6	42.3	150.4		Ca	158.6	55.4	206.9		Ca	158.6	53.8	215.9
Cu MOF	Ca radial	158.6			1	Ca radial	158.6			18	Ca radial	158.6		
	Mg	52.6			١	Mg	52.6			Comp	Mg	52.6		
	Mg radial	52.6	14.5		19	Mg Mg radial	52.6	13.8		2 u Z	ing radiat	52.6	16.4	
	S	69.4	83.3		_	S	69.4	110.5		`	5	69.4	130.3	
	Si	9.3	10.4			Si	9.3	27.3			Si	9.3	15.3	

Reagan Turley, Jose Hernandez Viezcas (Gardea-Torresdey)


Target Contaminants

Sample	Methylene	As (II),(V)	Pb (II)	Selenium	Naphthenic
	Blue				Acids
GO-BTC					
(Cu,Ni,Co,Zn)					
GO-BDC					
(Zr)					
GO-ZIF					
(Co, Zn)					
BNNS-BTC					
(Cu, Ni,					
Co,Zn)					
BNNS-ZIF					
(Co, Zn)					
AC-BTC					
(Cu, Ni, Co,					
Zn)					
AC-BDC					
(Zr)					
AC-ZIF					
(CO, Zn)					

No removal

Possible removal

Acknowledgements

UTEP

- Karen Ventura
- Mariana Marcos
- Prof. Gardea-Torresdey

Yale

- Prof. Elimelech
- Dr. Tong
- Prof. Zimmerman
- Dr. Amanda Lounsbury

RICE

- Prof. Wong
- Camilah Powell

RICE

- Prof. Westerhoff
- Dr. Ariel Atkinson

NMSU

Dr. Wang

Undergraduate students

- Roy Arrieta
- Jonathan Gracida
- Jerrin Philips

4A	Water Treatment I	
10:30 AM	Multifunctional magnetic nanocomposites (Overview talk)	Dino Villagran
11:00 AM	Arsenic Removal by Graphene Oxide-Nanoscale Zero-valent Iron Hybrid	Tonoy K. Das
11:20 AM	Development of multifunctional nanocomposite coating for indirect potable reuse water treatment	Pasan Chinthana Bandara
11:40 AM	Producing Clean Water and Salinity Gradient Energy by Using a Graphene Oxide Laminate	Xin Tong
12:00 PM	Iron Nanoparticle Impregnated 1-D and 2-D Carbon Nanohybrids Prepared with Ultrasonic Spray Pyrolysis for Cr (VI) Removal	Nirupam Aich
12:20 PM	Investigating the effect of graphene oxide on scaling in thin-film composite polyamide reverse osmosis membranes	Ali Ansari
12:40 PM	Lunch	

4B	Water Treatment II	
2:00 PM	Preferential interaction between functionalized multiwalled carbon nanotubes and bacteriophage MS2 in water	Navid B. Saleh
2:30 PM	Integration of graphene oxide in mixed-matrix membranes: balancing membrane performance with fouling resistance	Francois Perreault
2:50 PM	Application of External Voltage for the Release of Deposited Organic Foulants from PPy- Graphene Oxide and PPy- Molybdenum Disulfide Surfaces by NaCl Electrolysis	lftaykhairul Alam
3:10 PM	Water Clusters with Superatom Electronic States	Juan C. Noveron
3:40 PM	Break	
4:00 PM	Role of Particle Chemistry on Filtration Mechanisms of Water Treatment- Food Grade and Industrial Grade TiO2	Chen Chen
4:20 PM	Antimicrobial Property of MoS2 Nanosheets and Potential Application in Controlling Membrane Biofouling	Yingcan Zhao
4:40 PM	Characterizing Wastewater Behavior of Titanium Dioxide Nanoparticles	Travis Waller
5:10 PM	Facile Modification of Bi2WO6 with Base for Improved Photocatalytic Activity under Visible Light	Bangxing Ren
5:30 PM	Quantitative Understanding of Nanoparticle Flocculation in Water Treatment	Sungmin Youn